### **North Penn School District**

## **Elementary Math Parent Letter**

## Grade 4

## **Unit 5 – Chapter 11: Angles**

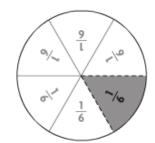
## **Examples for each lesson:**

#### Lesson 11.1

## Angles and Fractional Parts of a Circle

Find how many  $\frac{1}{6}$  turns make a complete circle.

Materials: fraction circles

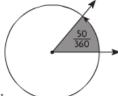

- Step 1 Place a  $\frac{1}{6}$  piece so the tip of the fraction piece is on the center of the circle.

  Trace the fraction piece by drawing along the dashed lines in the circle.
- **Step 2** Shade and label the angle formed by the  $\frac{1}{6}$  piece.
- Step 3 Place the  $\frac{1}{6}$  piece on the shaded angle.

  Turn it clockwise (in the direction that the hands on a clock move). Turn the fraction piece to line up directly beside the shaded section.
- Step 4 Trace the fraction piece. Shade and label it. You have traced \_2\_ sixths in all.
- Step 5 Repeat until you have shaded the entire circle.

There are Six angles that come together in the center of the circle.

So, you need  $\frac{\text{SiX}}{6}$  turns to make a circle.




#### Lesson 11.2

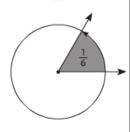
## **Degrees**

Angles are measured in units called **degrees**. The symbol for degrees is °. If a circle is divided into 360 equal parts, then an angle that turns through 1 part of the 360 measures 1°.

An angle that turns through  $\frac{50}{360}$  of a circle measures 50°.



Find the measure of an angle that turns through  $\frac{1}{6}$  of a circle.


**Step 1** Find a fraction that is equivalent to  $\frac{1}{6}$  with 360 in the denominator. **Think:**  $6 \times 60 = 360$ .

$$\frac{1}{6} = \frac{1 \times 60}{6 \times 60} = \frac{60}{360}$$

Step 2 Look at the numerator of  $\frac{60}{360}$ .

The numerator tells how many degrees are in  $\frac{1}{6}$  of a circle.

So, an angle that turns through  $\frac{1}{6}$  of a circle measures  $\underline{60^{\circ}}$ 



#### Lesson 11.3

## **Measure and Draw Angles**

A protractor is a tool for measuring the size of an angle.

Follow the steps below to measure ∠ABC.

Step 1 Place the center point of the protractor on vertex B of the angle.

Step 2 Align the 0° mark on the protractor with ray BC. Note that the 0° mark is on the outer scale or top scale.

Step 3 Find where ray BA intersects the same scale.

Step 4 Read the angle measure on the scale.

The m∠ABC = 30°.

More information on this strategy is available on Animated Math Model #44.

#### Lesson 11.4

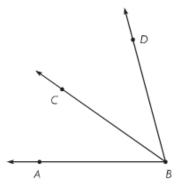
## Join and Separate Angles

The measure of an angle equals the sum of the measures of its parts.

Use your protractor and the angles at the right.

Step 1 Measure ∠ABC and ∠CBD. Record the measures.

$$m\angle ABC = 35^{\circ}$$
;  $m\angle CBD = 40^{\circ}$ 

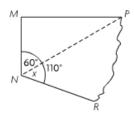

Step 2 Find the sum of the measures.

$$35^{\circ} + 40^{\circ} = 75^{\circ}$$

Step 3 Measure ∠ABD. Record the measure.

$$m\angle ABD = \frac{75^{\circ}}{}$$

So,  $m\angle ABC + m\angle CBD = m\angle ABD$ .




#### Lesson 11.5

# Problem Solving • Unknown Angle Measures

Use the strategy draw a diagram.

Mrs. Allen is cutting a piece of wood for a set for the school play. She needs a piece of wood with a 60° angle. After the cut, what is the angle measure of the part left over?



| Read the Problem                                                       |                                    |                                 |
|------------------------------------------------------------------------|------------------------------------|---------------------------------|
| What do I need to find?                                                | What information do I need to use? | How will I use the information? |
| I need to find the angle                                               | I can use the angle                | I can draw a bar model to       |
| measure of the part left                                               | measures I know:                   | find the unknown angle          |
| over, or m∠PNR                                                         | m∠MNP = 60° and                    | measure, or m∠PNR               |
|                                                                        | <u>m∠MNR</u> = 110°                |                                 |
| Solve the Problem                                                      |                                    |                                 |
| I can draw a bar model to represent the problem                        |                                    |                                 |
| Then I can write an equation to solve the problem                      |                                    |                                 |
| $m \angle MNP + m \angle PNR = m \angle MNR$ 60°                       |                                    | X                               |
| $60^{\circ} + x = 110^{\circ}$                                         |                                    | ^                               |
| $x = 110^{\circ} - 60^{\circ}$ , or $50^{\circ}$                       |                                    | 110°                            |
| So, m∠ <i>PNR</i> =50°_                                                |                                    |                                 |
| The angle measure of the part left over is $\underline{-50^{\circ}}$ . |                                    |                                 |

## **Vocabulary**

**Clockwise** – in the same direction in which the hands of a clock move

**Counterclockwise** – in the opposite direction in which the hands of a clock move

**Degree (°)** – the unit used for measuring angles

**Protractor** – a tool used for measuring the size of an angle

Acute angle – an angle that measure greater than 0° and less than 90°

Obtuse angle – an angle that measures greater than 90° and less than 180°

Ray – a part of a line; it has one endpoint and continues without end in one direction

**Right angle** – an angle that forms a square corner and has a measure of 90°

**Vertex** – the point at which two rays on an angle meet or two (or more) line segments meet in a two-dimensional shape